Announcement:
Shenzhen Faisemi Electronics Co.,Ltd
20E, Block B, Douhui 100, Zhonghang Rd, Shenzhen,China
Tel: 86-755-63918355
Fax: 86-755-23932236
2022-06-22 06:16:13 View: 829
Published in Nature Communications, University of Melbourne researchers say their discovery could result in vastly improved organic solar cell performance. Lead author Dr David Jones of the university’s School of Chemistry and Bio 21 Institute, said these cells will be easier to manufacture, with the new crystals now able to work in cells that are double in thickness on the previous limit of 200 nanometres.
“We have improved the performance of this type of solar cell from around 8% efficient to 9.3%, finally approaching the international benchmark of 10%.”
It means that consumers can look forward to more competitive pricing in the solar energy sector, and according to Dr Jones, the discovery is a shot-in-the-arm for the organic materials sector. “The discovery is a step forward for the wider commercialisation of printed organic solar cells. But more than this, could aid in the development of new materials with improved performance such as LCD screens.”
Uptake of the current generation of organic solar cells has lagged behind more widespread silicon-based models, due to their comparative lack of performance even with a simplified construction via large printers.
This is despite the organic models providing an unparalleled degree of versatility in how they are used; they can be shaped to fit nearly any surface area, as opposed to the traditional ‘grid’ formation of silicon-based cells.
“It had been theorised that a certain group of nematic liquid crystals would provide excellent electronic properties - as well as being printable - and therefore they had been sought for a long time,” said Dr Jones.
“With this research, we have shown for the first time these high-performing materials.
“We’ve seen recently at the annual Consumer Electronics Show (CES) in Las Vegas that printable electronics have an exciting future, as parts of phones and even cars. This discovery could help improve the performance of these solar cells, and lead to even more innovation in the coming years,” concluded Dr Jones.
The research was conducted with international researchers in Singapore, China and Germany, and received funding from the Victorian Organic Solar Cell Consortium and the Australian Centre for Advanced Photovoltaics.
SKYPE